自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(28)
  • 资源 (71)
  • 论坛 (2)
  • 收藏
  • 关注

原创 图片分类-数据增强

import osimport PIL.Image as Imageimport shutilfrom torchvision import transformsfrom numpy.random import randint,randomdef zengqiang(root_path): for img in os.listdir(root_path): i = 0. if img[-3:] in ["jpg", "png", "JPG","bmp"]:

2021-04-24 21:24:24 66 1

原创 目标检测之空间变形网络(STN)

目标检测之空间变形网络(STN)一、STN定义STN:是一个可以放置在CNN前面,或嵌入到CNN其中的某一环节的模块(空间变形器),是Google旗下 DeepMind 公司的研究成果。该论文提出空间变换网络STN,分为参数预测、坐标映射、像素采集三大部分,可以插入到现有的CNN模型中。通过对数据进行反向空间变换来消除图片上目标的变形,从而使得分类网络的识别更加简单高效。二、CNN的平移不变性普通的CNN能够显示的学习平移不变性,以及隐式的学习旋转不变性,所以图像上的目标物体就算是做了平移或者旋转,

2021-04-22 14:21:43 196

原创 金融债券图片数据爬虫

在做全国大学生服务外包大赛中A18需要我们收集大量金融相关文本表格数据,于是需要自己收集并标注。先以搜索词“资产债券表”为例:我们在百度图片中搜索“资产债券表”,向下滑动网页时,图片会不断加载,因此该网页是动态加载的网页,按F12,选择网络,在消息中选择过滤XHR消息。可以看出,该请求为GET请求,返回的是一个JSON文件,查看响应消息,里面的data蕴含着我们想要获取的每个图片的url。由此,我们可以利用requests模块的get方法模拟浏览器发送请求,获得其对应的JSON数据。可能使用

2021-04-20 17:40:24 94

原创 文本检测-EAST方法概述

《EAST: An Efficient and Accurate Scene Text Detector》特点概述:在这篇文章中,提出了一个快速且精确的场景文本检测方法,该方法取消了一些不必要的步骤(如:候选区域的聚合和词的分割),且它只包含两个阶段,可以在整幅图像中检测任意形状和方向的单词或文本行。方法概述:该方法利用一个全连接模型去直接预测单词或文本行,然后将预测的框进行Non-Maximum Suppression操作得到最后的结果。(生成的预测框可以是旋转的矩形或四边形)贡献:提出了场景文

2021-04-20 15:23:00 100

原创 maskrcnn学习笔记

机器视觉领域的核心问题之一就是目标检测(objectdetection),它的任务是找出图像当中所有感兴趣的目标,并确定其位置和大小。作为经典的目标检测框架FasterR-CNN至今仍然是许多目标检测算法的基础,这在飞速发展的深度学习领域十分难得。而在Faster R-CNN的基础上改进的MaskR-CNN可以应用到人体姿势识别,并且在实例分割、目标检测、人体关键点检测三个任务都取得了很好的效果。因此,百度深度学习框架PaddlePaddle开源了用于目标检测的RCNN模型,从而可以快速构建强大的应.

2021-04-20 12:08:54 103

原创 SSD目标检测

一、简介SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法,是主要的检测框架之一,相比Faster RCNN有明显的速度优势,相比YOLO又有明显的mAP优势。SSD主要用来解决目标检测的问题(定位+分类),即输入一张待测图像,输出多个box的位置信息和类别信息;测试时,输入一张图像到SSD中,网络输出一个下tensor(多维矩阵),对该矩阵进行非极大值抑制(NMS)就能得到每个目标的位置和label信息SSD具有如下

2021-04-20 12:08:05 534 5

原创 目标检测基础入门

目标检测基础入门一、概述(1)背景目标检测是计算机视觉和数字图像处理的一个热门方向,广泛应用于诸多领域,有重要的意义。由于深度学习的广泛运用,目标检测算法得到了较为快速的发展。(2)目标检测别研究方法主要分为两类。①基于传统图像处理和机器学习算法的目标检测主要可以表示为:目标特征提取→目标识别→目标定位。这里所用到的特征都是认为设计的,通过这些特征对目标进行识别,然后再结合相应的策略对目标进行定位。②基于深度学习的目标检测主要可以表示为:图像的深度特征提取→基于深度神经网络的目标识别与定位

2021-04-20 12:06:58 111 1

原创 StarNet模型

StarNet模型1.背景民以食为天,如何提升超大规模配送网络的整体配送效率,改善数亿消费者在”吃“方面的体验,是一项极具挑战的技术难题。面向未来,美团正在积极研发无人配送机器人,建立无人配送开放平台,与产学研各方共建无人配送创新生态,希望能在一个场景相对简单、操作高度重复的物流配送中,提高物流配送效率。在此过程中,美团无人配送团队也取得了一些技术层面的突破,比如基于神经网络StarNet的行人轨迹交互预测算法,论文已发表在IROS 2019。IROS 的全称是IEEE/RSJ Internationa

2021-04-20 12:05:57 200

原创 Rosetta模型

Rosetta模型1.介绍从头预测,来源于拉丁文ab initio或de novo,严格的讲,这两者是有区别的,前者ab initio意思是from tlIe beginning,指基于第一性原则(6rst principles)而不依靠同源序列、数据库、二级结构等其它信息,仅靠一条蛋白质序列产生三维结构。后者de novo意思是from the new,是一个更宽泛的含义,指不需要PDB中的同源模板而是依靠对其他结构的观察来预测。生物分子演化出了令人惊叹的本领,那就是它们可以由化学序列指导折叠成唯一

2021-04-20 12:04:30 143

原创 SRN模型

SRN模型场景文本图像包含两个级别的内容:视觉纹理和语义信息。尽管过去的几年中场景文本识别方法取得了长足的进步,但是挖掘语义信息以辅助文本识别的研究却很少受到关注,仅探索类RNN的结构来隐式地建模语义信息。但是,我们发现基于RNN的方法存在一些明显的缺点,如时间依赖的解码方式和语义上下文的单向串行传输,这极大地限制了语义信息的帮助和计算效率。为了减轻这些限制,我们提出了一种新颖的端到端可训练框架,该框架称为语义推理网络(SRN),用于准确的场景文本识别,其中引入了全局语义推理模块(GSRM),以通过多路并

2021-04-20 12:01:26 295

原创 RARE模型

介绍:RARE(Robust text recognizer with Automatic Rectification,具有自动校正功能的鲁棒性文本识别器)是由**空间变形网络(STN)和序列识别网络(SRN)**组成。在测试中,首先通过predicted Thin-Plate-Spline(TPS)对图像进行校正,为后续的SRN(通过序列识别方法识别文本)生成更“可读”的图像。RARE模型在识别变形的图像文本时效果很好。如下图所示,模型预测过程中,输入图像首先要被送到一个空间变换网络中做处理,矫正过的图

2021-04-19 13:37:18 118

原创 CRNN模型

介绍:是目前较为流行的图文识别模型,可识别较长的文本序列, 它利用BLSTM和CTC部件学习字符图像中的上下文关系, 从而有效提升文本识别准确率,使得模型更加鲁棒。 CRNN是一种卷积循环神经网络结构,用于解决基于图像的序列识别问题,特别是场景文字识别问题。 文章认为文字识别是对序列的预测方法,所以采用了对序列预测的RNN网络。通过CNN将图片的特征提取出来后采用RNN对序列进行预测,最后通过一个CTC的翻译层得到最终结果。说白了就是CNN+RNN+CTC的结构。CRNN 全称为 Convolution

2021-04-19 13:36:45 339

原创 OCR文本检测-RRPN

RRPN,Rotation Region Proposal Networks,旋转区域候选框网络。通过其命名就可以看出,他是为了解决目标检测中的检测区域具有旋转角度的情况而产生的。其论文最初提出的应用场景,是为了解决自然场景下的文本检测问题而提出的,在自然场景中,由于视角的原因,获得图片中的文字常常都是带有旋转角度的,而之前的文字检测方法都是基于水平框的检测,如下图所示,        在本文中,我们开发了一个基于旋转的方法和一个端到

2021-04-18 09:40:39 98

原创 OCR文本检测算法-CTPN模型

介绍:CTPN是在ECCV 2016提出的一种文字检测算法,是目前流传最广、影响最大的开源文本检测模型,可以检测水平或微斜的文本行。CTPN结合CNN与LSTM深度网络,能有效的检测出复杂场景的横向分布的文字,效果如图:关键idea采用垂直anchor回归机制,检测小尺度的文本候选框文本检测的难点在于文本的长度是不固定,可以是很长的文本,也可以是很短的文本.如果采用通用目标检测的方法,将会面临一个问题:**如何生成好的text proposal**.针对上述问题,作者提出了一个vertical an

2021-04-18 09:29:55 116

原创 ocr优化

ocr优化相关问题(一)提高OCR准确度方法1.检查图像质量:我们首先要确保原始图像是可见的,以便它们可以获得更好的结果。2.选择最好的OCR模型:OCR主要负责理解给定图像中的文本,因此有必要选择能够更好的检测和识别的模型,来处理图像3.将图像缩放到合适的大小:我们尝试将图像缩放到大约300 dpi的标准尺寸,低于此尺寸的图像都会产生不清晰的结果,而高于600 dpi的图像会使输出文件变大而质量不高。4.消除图像中的噪音:如果图像中存在背景或前景噪声,我们要将其删除,以便获得高质量的数据

2021-04-17 17:28:12 98

原创 Python 按坐标进行文字剪裁

如图,若给出每个文本框的坐标,而我们想将其剪裁下来,可以使用如下方法。import numpy as npimport cv2def shot(img, dt_boxes,image_file):#通过dt_boxes中获得的四个坐标点,裁剪出图像 dt_boxes = dt_boxes.tolist() #将np转换为列表 boxes_len = len(dt_boxes) for num in range(boxes_len): box = dt_bo

2021-04-17 16:05:33 35

原创 CRNN——卷积循环神经网络结构

简介CRNN 全称为 Convolutional Recurrent Neural Network,是一种卷积循环神经网络结构,主要用于端到端地对不定长的文本序列进行识别,不用先对单个文字进行切割,而是将文本识别转化为时序依赖的序列学习问题,就是基于图像的序列识别。CRNN(Convolutional Recurrent Neural Network)是目前较为流行的图文识别模型,可识别较长的文本序列。它包含CNN特征提取层和BLSTM序列特征提取层,能够进行端到端的联合训练。 它利用BLSTM和CTC

2021-04-17 15:32:04 199

原创 OCR常见问题(4)

7、错误汇总遇到了一个问题,模型是上面的我的数据的新模型,数据是从生成数据中截留的一点测试数据在官方的infer中执行结果:但是我train的时候准确率是高达0.99的,所以我用train修改了一个可以输出测试结果的代码发现,问题出现在这一步indexes = prune(np.array(result[0]).flatten(), 0, 1)由于我的输出当中全部都是数字,所以生成的结果通过0和1缩短一下以后就不成数据了。错误原因:SHAPE的大小不对我在的图片是32300的,但是shap

2021-04-17 11:03:21 91

原创 paddleocr常见问题(3)

将“检测”训练模型转化为推理模型确定配置文件路径打开program.py脚本,找到class ArgsParser构造函数,修改为如下形式(注意相对路径填写正确):然后将图中箭头指向的那一行,光标处添加一句代码default = “D:\PO\configs\det\det_mv3_db_v1.1.yml”,注意文件路径根据自己的电脑填写正确。注意相对路径填写规则 “./ ”表示同级目录, “…/”表示上级目录, “…/…/”表示上上级目录, (以运行的.py文件为当前路径)将“识别”训

2021-04-17 11:03:07 168

原创 paddleOCR常见问题(2)

1.win10下anconda中,执行paddleocr的GPU训练或总是报错cudnn版本不匹配在百度上看了许多大佬的解答,都是说让下载新的或者装什么后来根据查看三个目录:D:\Anaconda3\Library\bin、D:\Anaconda3\Library\lib、D:\Anaconda3\Library\include将cudnn替换到这些目录下,就解决了这个问题。2.win10下,有的电脑训练时train.py调用不了1.终端路径问题,路径缺失造成无法调用2.版本问题,很多都是

2021-04-17 11:02:49 132

原创 OCR训练常见问题(1)

报错图片数量太少Exception: The number of the whole data (800) is smaller than the batch_size * devices_num * num_workers (2048)----------------------Error Message Summary:----------------------FatalError: Blocking queue is killed because the data reader rais

2021-04-17 11:02:36 268

原创 修改xml文件内容

修改xml文件内容import xml.etree.ElementTree as ETimport pickleimport osfrom os import listdir, getcwdfrom os.path import joindef findss(xml_path): xml_file = open(os.path.join(xml_path),encoding="utf-8") tree=ET.parse(xml_file) root = tree.getr

2021-04-13 18:34:51 89

原创 voc数据集xml文件转换为txt文件并划分训练集、测试集

如何提取voc中的某一类这里有写:https://xiaobaibubai.blog.csdn.net/article/details/115660715本代码可以将voc数据集xml文件转换为txt文件:import xml.etree.ElementTree as ETimport pickleimport osfrom os import listdir, getcwdfrom os.path import join# 改变坐标格式def convert(size, box):

2021-04-13 14:11:20 147

原创 提取voc数据集中特定的类

先贴出代码:import shutilimport osimport xml.etree.ElementTree as ETAnnotations_path = r"E:/data/voc/VOCdevkit/VOC2007/Annotations"image_path = r"E:/data/voc/VOCdevkit/VOC2007/JPEGImages"save_img_path = r"E:/data/voc/VOCdevkit/VOC2007/tte/"save_xml_path

2021-04-13 12:31:38 111

原创 Could not find module ‘D:\codna\Library\bin\geos_c.dll‘

Could not find module ‘D:\codna\Library\bin\geos_c.dll’哎,用paddle时,这一个小错也不知道啥引起的,反正就报这个错,找了好久,最终在wai网找到了答案。。。https://www.dll-files.com/geos_c.dll.html在这里下载,打不开的可以在我资源里下https://download.csdn.net/download/weixin_45755332/16621701...

2021-04-11 19:50:48 179 2

原创 pytorch自定义图片输入

pytorch使用其自带的数据集制作训练集和测试集是简单的,但我们需要训练自己的数据集时就要自己写函数来进行图片划分,转义,输入等操作了。这里我以四种天气数据为例来说明如果用pytorch进行自定义图片输入。其结构如图,四类图片均在一个文件夹内。我们需要做的是将他们划分为训练集和测试集,供模型训练。导入需要的库import torchfrom torch.utils import datafrom PIL import Image # pip install pillowimport

2021-04-03 12:36:53 205 1

原创 机器学习必备知识

误差bias:偏差,variance:方差偏差就是偏离真实值的程度,方差就是模型稳定性,下图可以直观的看出两者的概念high bias - low variance:许多个拟合模型都聚集在一堆,位置比较偏,无论什么样子的数据灌进来,拟合的模型都差不多,这个模型过于简陋了,参数太少了,复杂度太低了,这就是欠拟合low bias - high variance:所有拟合模型都围绕中间那个红色中心点(hint)均匀分布,但又不够集中,很散,这就意味着,数据一有风吹草动,拟合模型就跟着剧烈变化,这说

2021-04-02 18:57:34 44

原创 机器学习基本概念

损失函数对于线性回归模型,需要一个标准来对结果进行衡量,因此我们需要量化一个目标函数,使得程序可以不断优化,最终得到最优的结果。损失函数是一个非负实数函数,用来量化模型预测和真实值标签之间的差异。将线性回归模型假设函数带入损失函数:需要求解参数w和b看作是损失函数L的自变量。现在的任务就是求解最小化L时w和b的值,即核心目标优化式为:求解方法最小二乘法(least square method)在统计学中,求解w和b是使损失函数最小化的过程,称为线性回归模型的最小二乘"“参数估计”(para

2021-04-02 18:23:05 24

随机森林气温预测数据+代码.zip

随机森林气温预测数据+代码.zip随机森林气温预测数据+代码.zip随机森林气温预测数据+代码.zip随机森林气温预测数据+代码.zip随机森林气温预测数据+代码.zip

2021-02-03

从零开始学习YOLO.pdf

从零开始学习YOLO.pdf

2020-06-27

Excel高级图表制作教程(全).ppt

Excel高级图表制作教程(全).ppt

2020-06-27

三角函数公式大全.pdf

初中高中大学所有三角函数总结以及推导,必须安排

2020-03-16

应用无法正常启动0xc000007b修复工具.zip

应用无法正常启动0xc000007b修复工具应用无法正常启动0xc000007b修复工具应用无法正常启动0xc000007b修复工具应用无法正常启动0xc000007b修复工具

2021-02-17

2019美赛C题数据+O奖论文.zip

2019美赛C题数据+O奖论2019美赛C题数据+O奖论2019美赛C题数据+O奖论

2021-01-25

labelimg.zip

labelimg标注工具,打包版,下载后可以直接用

2021-03-19

Could not find module ' \codna\Library\bin\geos_c.dll'

Could not find module 'D:\codna\Library\bin\geos_c.dll'Could not find module 'D:\codna\Library\bin\geos_c.dll'Could not find module 'D:\codna\Library\bin\geos_c.dll'

2021-04-11

visual studio 2017 vs2017

visual studio 2017离线版下载,

2021-07-12

reset_jetbrains_eval_mac_linux.zip

idea,pycharm 重置工具,恢复安装设置idea,pycharm 重置工具,恢复安装设置idea,pycharm 重置工具,恢复安装设置idea,pycharm 重置工具,恢复安装设置idea,pycharm 重置工具,恢复安装设置idea,pycharm 重置工具,恢复安装设置idea,pycharm 重置工具,恢复安装设置idea,pycharm 重置工具,恢复安装设置idea,pycharm 重置工具,恢复安装设置idea,pycharm 重置工具,恢复安装设置idea,pycharm 重置工具,恢复安装设置idea,pycharm 重置工具,恢复安装设置idea,pycharm

2020-09-06

matlab 基本2500个函数.pdf

matlab 基本2500个函数.pdf

2020-06-01

《数学分析1》课件.zip

《数学分析1》课件.zip《数学分析1》课件.zip《数学分析1》课件.zip《数学分析1》课件.zip《数学分析1》课件.zip《数学分析1》课件.zip《数学分析1》课件.zip

2020-03-20

数值分析数学建模看.zip

数值分析讲义,挺不错的

2020-03-12

数学建模美赛2020C题数据以及优秀o奖论文

数学建模美赛2020C题数据以及优秀o奖论文数学建模美赛2020C题数据以及优秀o奖论文数学建模美赛2020C题数据以及优秀o奖论文

2021-01-30

大学物理答案.pdf

大学物理答案.pdf

2020-06-27

3-决策树与集成算法-converted.pptx

决策树与集成算法详解,文章后面还有实战源码(也有详解) 下面是决策树优点 1. 决策树易于理解和解释,可以可视化分析,容易提取出规则; 2. 可以进行回归和分类 3. 比较适合处理有缺失属性的样本; 4. 能够处理不相关的特征; 5. 测试数据集时,运行速度比较快; 6. 在相对短的时间内能够对大型数据源做出可行且效果良好的结果。

2020-05-24

高数B1往年试卷.zip

高数B1往年试卷.zip

2020-06-27

Python机器学习基础源码.zip

Python机器学习源码,直接复制粘贴就好

2020-03-11

5. 网络 微调预训练网络RESNET pytorch源码,天气数据四分类问题

5. 网络 微调预训练网络RESNET pytorch源码,天气数据四分类问题

2021-02-24

傅里叶(Fourier)级数

傅里叶(Fourier)级数 PPT

2020-03-16

飞机大战坦克.zip飞机大战坦克.zip

飞机大战坦克.zip

2020-03-15

山东建筑大学校徽镂空透明

山东建筑大学校徽镂空透明山东建筑大学校徽镂空透明山东建筑大学校徽镂空透明山东建筑大学校徽镂空透明山东建筑大学校徽镂空透明山东建筑大学校徽镂空透明山东建筑大学校徽镂空透明山东建筑大学校徽镂空透明山东建筑大学校徽镂空透明山东建筑大学校徽镂空透明山东建筑大学校徽镂空透明

2020-03-20

creditcard.zip

信用卡欺诈检测数据

2021-02-01

7. 模型权重保存7. 模型权重保存

7. 模型权重保存7. 模型权重保存7. 模型权重保存

2021-02-24

预训练网络RESNET pytorch源码,天气数据四分类问题

预训练网络RESNET pytorch源码,天气数据四分类问题预训练网络RESNET pytorch源码,天气数据四分类问题

2021-02-24

学习速率衰减.pytorch源码,天气数据四分类问题

学习速率衰减.pytorch源码,天气数据四分类问题学习速率衰减.pytorch源码,天气数据四分类问题

2021-02-24

数据增强pytorch源码,天气数据四分类问题

数据增强pytorch源码,天气数据四分类问题

2021-02-24

BN层pytorch源码,天气数据四分类问题

BN层pytorch源码,天气数据四分类问题BN层pytorch源码,天气数据四分类问题

2021-02-24

手写数字识别参考代码和数据集

pytorch版本的,手写数字识别参考代码和数据集手写数字识别参考代码和数据集手写数字识别参考代码和数据集

2021-02-22

优化建模与lindo&lingo软件ppt(谢金星).zip

优化建模与lindo&lingo软件ppt(谢金星).zip

2020-06-27

dataset.zip

dataset.zip

2021-01-11

高等数学、数学分析期末必考知识点

目录 1. 定积分 1 2. 二重积分 12 3. 第一类曲线积分 16 4. 第二类曲线积分 19 5. 三重积分 27 6. 第一类曲面积分 34 7. 第二类曲面积分 36

2021-01-01

shendupycharmidea

pycharmidea

2020-11-07

bootstrap-4.3.1-dist.zip

bootstrap-4.3.1-dist.zipbootstrap-4.3.1-dist.zipbootstrap-4.3.1-dist.zipbootstrap-4.3.1-dist.zipbootstrap-4.3.1-dist.zipbootstrap-4.3.1-dist.zipbootstrap-4.3.1-dist.zipbootstrap-4.3.1-dist.zipbootstrap-4.3.1-dist.zipbootstrap-4.3.1-dist.zip

2020-03-15

《Python数据科学与机器学习:从入门到实践》

《Python数据科学与机器学习:从入门到实践》

2020-05-28

base(1).apk

京东贴蛋糕小助手

2020-05-29

MATLAB判断函数的奇偶性.pdf

MATLAB的简单应用

2020-03-11

yolov3_darknet.tar

yolov3_darknet.tar

2020-05-28

坦克大战——ysx版.zip

好喜欢小公主,于是把坦克的照片改成了小姐姐的,还有蔡徐坤和他的篮球哦

2020-04-10

suijimanhua1.m

ceshi.mMATLAB的元胞自动机模型

2020-03-15

买的外置无线网卡 WiFi突然搜不到了 求救求救

发表于 2020-04-16 最后回复 2020-04-17

小白求救

发表于 2019-12-17 最后回复 2019-12-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除